Devoir maison 1 pour le mercredi 24 Septembre 2025 - Facultatif

S. Benlhajlahsen

I Diode à effet tunnel

I.A Étude de la caractéristique statique

On considère dans toute la suite une diode à effet tunnel (ou diode Esaky) est une diode à semi-conducteur, qui remplit la fonction d'une diode dans les circuits où un temps de commutation 1 très court devient indispensable (jusqu'à 5 GHz). On donne en figure 1 le symbole de cette diode en convention récepteur et en figure 2 la caractéristique statique de celle-ci. Cette dernière a pour équation Cette dernière à pour equation :

$$i = f(u) = au^3 - bu^2 + cu$$

où a, b et c sont des constantes positives

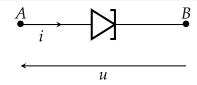


FIGURE 1 – Symbole de la diode à effet tunnel.

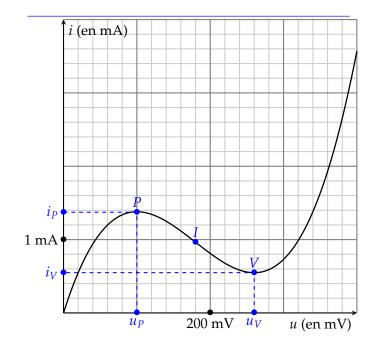


FIGURE 2 – Allure de la caractéristique statique.

On note sur cette caractéristique :

- un maximum local en P de tension $u_P = 100$ mV et d'intensité $i_P = 1,38$ mA;
- un minimum local en V de tension $u_V = 260$ mV et d'intensité i_V ;

Entre la tension u_P et la tension u_V , la pente de la caractéristique est négative et présente un point d'inflexion en I^2 .

- **Question 1**: Quelles sont les dimensions des trois coefficients *a*, *b* et *c*?
- **Question 2** : Déterminer un système d'équations vérifiées par les trois constantes *a*, *b* et *c*.
- **Question 3** : Donner alors l'expression littérale de a, b et c.

^{1.} passage entre un état bloquant et un état passant

^{2.} annulation de la dérivée seconde

- **Données :** Le calcul précédent donne $a \approx 0.405u_{SI}$, $b \approx 0.219u_{SI}$ et $c \approx 0.0316u_{SI}$.
- **Question 4**: Quelle est la valeur de i_V ? Vérifier que cela correspond à la figure 2.

On appelle dans toute la suite résistance dynamique R_d telle que $\frac{1}{R_d} = \frac{di}{du}$.

Question 5 : Dans quelle zone de la caractéristique, cette résistance est-elle negative?

Question 6: xprimer, en fonction des constantes *a*, *b*, *c*:

- la tension U_I de la diode au point d'inflexion I puis faire l'application numérique;
- la résistance dynamique au niveau du point d'inflexion *I* puis faire l'application numérique.

I.B Point de fonctionnement de la diode

La diode tunnel est mise en série avec un générateur de tension (de force électro-motrice E=0.70 V et de résistance interne $r=8.0~\Omega$) et d'une résistance R ajustable entre $1.0~\omega$ et $1.0~\mathrm{k}\Omega$ (voir figure 3).

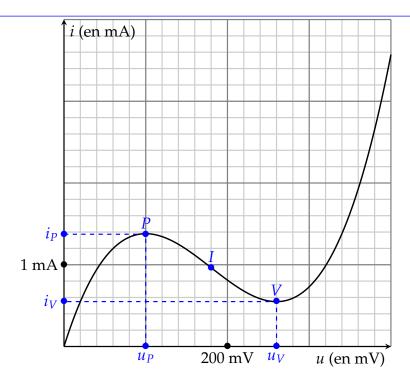


FIGURE 3 – Allure de la caractéristique statique.

Question 7: On prend $R=100~\Omega$ pour cette question et la suivante. Représenter sur la figure 4 la caractéristique de l'ensemble $\{E,r,R\}$. Déterminer alors graphiquement les coordonnées du point de fonctionnement.

Question 8 : Quelle est dans cette situation la puissance reçue par la diode? Faire l'application numérique. De même, donner la puissance totale dissipée par effet Joule.

On reprend une valeur de R ajustable.

Question 9: Justifier, par la méthode de votre choix, qu'il est possible d'avoir plusieurs points de fonctionnement. Pour quelles valeurs de *R* a-t-on plusieurs solutions?

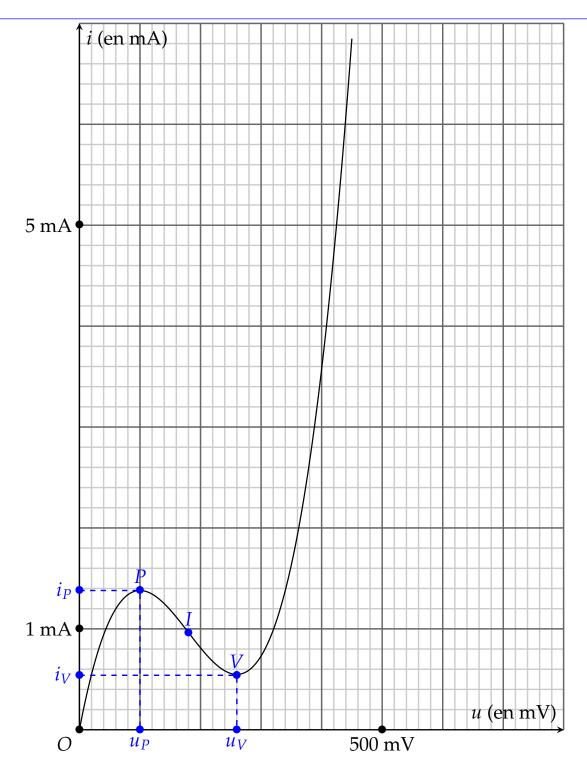


FIGURE 4 – Allure de la caractéristique statique.